f) Photo-Acoustic Sensors for Environmental and Medical Applications
An increasing number of environmental problems has initiated the development of sensitive
detectors for monitoring pollutants in the atmosphere. Particularly sensors based on the photo-
acoustic effect in conjunction with lasers have the potential of monitoring trace gases at con-
centrations down to the ppt (parts per trillion) region. Also in medical diagnostics photo-acoustic
sensors find successful applications as breath test analyzer.
Photo-Acoustic Effect
Photo-acoustic detection utilizes the fact, that the excitation energy of light absorbing molecules
is essentially transferred into kinetic energy of the surrounding molecules via inelastic collisions.
This causes a local pressure increase in the absorbing gas. If the excitation source is modulated,
a sound wave is generated,
that can be detected by a mi-
crophone. This signal is di-
rectly proportional to the
concentration of the absorb-
ing molecules in the sample.
Therefore a calibrated set-up
allows to measure directly
the absolute concentration
of a gas.
Photo-acoustic spectroscopy
(PAS) has the advantage of
producing a signal only when
light is absorbed. Hence, contrary to transmission spectroscopy, PAS is an offset-free technique,
and it is possible to replace relatively long absorption cells by much smaller ones. In addition,
acoustic cell resonances can successfully be
used to further enhance the signal and there-
by to further increase the detection sensitivity.
The PAS technique is primarily used in con-
junction with high power gas lasers, since the
photo-acoustic signal is proportional to the
intensity of the light. However, the disadvan-
tage of these lasers is often their non-tunabi-
lity and therefore the requirement of a coin-
cidence with an absorption line. Usually, the
modulation of these lasers is performed with a
mechanical chopper, which may cause coher-
ence noise by the rotating blade and an additional photo-acoustic signal by absorption of the
cell windows. This deteriorates the sensitivity of a photo-acoustic detector.
Most of these disadvantages can be avoided by a photo-acoustic spectrometer, which is based
on a single frequency diode laser for the selective excitation of the trace gases.
In the meantime the available emission wavelength of these lasers covers the entire near IR and
mid IR spectral range which is important for trace gas detection, since most molecules have
their strong fundamental vibration absorption bands in this region.
Detection of Toxic Industrial Gases
An example for high selective and sensible detection of a toxic gas is a photo-acoustic sensor for
hydrofluoric acid (HF). This gas is widely used in industrial processes as a chemical intermediary
for purification, cleaning, and synthesis. It is also released to the atmosphere at garbage
incinerators, at power plants or in the metal and chemical industry. Since HF is highly toxic,
already smallest concentrations must be monitored to register any leakage in a gas pipe system
or closed compartment and to give alarm at dangerous concentration levels. HF has a Threshold
Limit Value of 3 ppm (by volume) and is generally measured with relatively expensive sensors
like chromatographs, ion mobility spectrometers or electro-chemical cells.
A sensor based on a room temperature distributed feed¬back (DFB) diode laser operating on a
wavelength of 2.476 μm in combination with a photo-acoustic resonance cell represents a much
cheaper, more compact and much more sensitive detector allowing measurements of HF con-
centrations of a few ppb.
13
C-Breath-Test-Analyzer
Medical breath tests are well established diagnostic tools, predominantly for gastroenterological
in-spections, but also for many other examinations. Since the composition and concentration of
exhaled volatile gases reflect the physical
condition of a patient, a breath analysis al-
lows to recognize an infectious disease in
an organ or even to identify a tumor.
One of the most prominent breath tests is
the
13
C-urea-breath test, applied to ascer-
tain the presence of the bacterium helico-
bacter pylori in the stomach wall as an indi-
cation of a gastric ulcer.
For such a breath test a patient orally re-
ceives isotope-marked urea, where the most common isotope
12
C is replaced to a large extent
by the isotope
13
C (natural abundance is 1.1 %). In the stomach the substrate is metabolized to
isotope marked carbon dioxide which in the presence of helicobacter bacteria is absorbed by
the blood and finally released in the patient’s breath.
For a reliable diagnosis already changes of the
13
CO
2
concentration of 1% have to be detected at
a concentration level of this isotope in the breath of about 400 ppm. The total CO
2
concentration
in the exhaled breath is about 4%.
Generally this concentration is determined by a
highly sophisticated and expensive gas analy-
zer like a differential mass spectrometer or a
specially adapted optical gas detector. An at-
tractive and relative cheap alternative is a
photo-acoustic analyzer operating with an am-
plitude modulated semiconductor laser on a
wavelength of 2.744 µm.
The concentration ratio of the CO
2
isotopo-
logues is determined by measuring the integral absorption over a
13
CO
2
line in comparison to a
12
CO
2
line. In a specially selected spectral range the lines have similar strengths, although the
concentrations differ by a factor of 90. Therefore, the signals are well comparable. The laser
wavelength is accurately controlled and tuned across the absorption lines by changing the laser
temperature.
Since it is much easier to monitor any variations of the isotopic abundance with respect to a
reference than to detect an absolute concentration, the laser radiation is split into two beams
which then pass through two identical photo-acoustic cells containing different breath samples,
one taken before (used as reference) and one after capturing the isotope-marked substrate.
Such a set-up gives excellent signal-to- noise ratios and allows to resolve isotopic concentration
differences of 1‰ or even less, which is quite sufficient for a reliable breath test analysis.
Doctoral Theses
L. Pfeifer
Photoakustische Untersuchungen am TNT in der Dampfphase
School of Electrical Engineering, Helmut-Schmidt-Uiversity, Hamburg 1992
M. Wolff
Photoakustischer Nachweis von Spurengasen - Realisierung kompakter Gassensoren
School of Electrical Engineering, Helmut-Schmidt-Uiversity, Hamburg 1997
M. Germer
Photoakustischer Stickstoffmonoxid-Detektor auf Basis eines Quantenkaskadenlasers
School of Electrical Engineering, Helmut-Schmidt-Uiversity, Hamburg 2010
Refereed Publications in Journals and Conference Digests
M. Wolff, H. Harde
Photoacoustic Spectroscopy with a Frequency-Modulated DFB Diode Laser
Conference on Lasers and Electro-Optics, Vol. 11, 1997 OSA Technical Digest Series (Optical Society of
America), Washington, D.C.,1997, p. 518 (1997)
M. Wolff, H. Harde
Photoacoustic Spectrometer Based on a DFB-Diode Laser
Infrared Physics and Technology, 41 (5), pp. 283-286 (2000)
M. Wolff, H. Harde
Photoacoustic Spectrometer Based on a Planckian Radiator with Fast Time Response
Infrared Physics and Technology 44, pp. 51-55 (2003)
M. Wolff, H. Harde, H. Groninga
Photoacoustic Sensor for Medical Applications
Photonics East – Smart Medical and Biomedical Sensor Technology and Applications, Providence/RI,
Proceedings of SPIE, Vol. 5261, pp. 5261–09 (2003)
M. Wolff, H. Groninga, H. Harde
Photoakustischer Sensor für Medizinische Diagnostik
Innovationsforum Photonik, Tagungsband, Goslar (2003)
M. Wolff, H.G. Groninga, H. Harde,
Photoacoustic Distributed Feedback Laser Spectroscopy on Hydrogen Fluoride,
Appl. Spectrosc., 58 (6), pp. 552-554 (2004)
M. Wolff, H. Harde, H.G. Groninga
Isotope-Selective Sensor based on PAS for Medical Diagnostics
13th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP), 13P-15,
Rio de Janeiro/Brazil (2004)
M. Wolff, H. Groninga, H. Harde
Photoacoustic Sensor for Medical Diagnostics
Conference Digest of Conference on Bio-Medical Optics 2004, Rio de Janeiro (2004)
M. Wolff, H.G. Groninga, M. Dressler, H. Harde
Photoacoustic Sensor for VOC’s: First Step towards a Lung Cancer Breath Test
European Conference on Biomedical Optics (ECBO), Munich/Germany, 12.-16. September 2005,
pp. 110-112 (2005)
M. Wolff, H.G. Groninga, M. Dressler, H. Harde
Photoacoustic Sensor for VOC’s: First Step towards a Lung Cancer Breath Test
Proc. SPIE, Vol. 5862, pp. 5862-16 (2005)
M. Wolff, H.G. Groninga, H. Harde
Resonance Investigations using a Photoacoustic Multi-Microphone System
Gordon Research Conference on Photoacoustic & Photothermal Phenomena (GRC PPP), A26,
Trieste/Italy (2005)
M. Wolff, H. Groninga, H. Harde, B. Baumann, B. Kost
Resonance Investigations using PAS and FEM
Forum Acusticum, Budapest, FA-7760 (2005)
M. Wolff, H. Groninga, B. Baumann, B. Kost, H. Harde
Resonance Investigations using PAS and FEM
Acta Acustica, Vol. 91, Suppl. 1, 99 (2005)
M. Wolff, H. Harde, H.G. Groninga
Isotope-Selective Sensor Based on PAS for Medical Diagnostics
J. Phys. IV France, 125, 773-775 (2005)
M. Wolff, H. Groninga, H. Harde
Photoacoustic CO
2
Detection at 2.7 μm
Photonics Europe – Optical Sensing II, Strasburg, 5. April 2006, Proceedings of SPIE, Vol. 6189,
pp. 220-225 (2006)
M. Wolff, H.G. Groninga, H. Harde
Isotope-Selective CO2 Detection at 2.7 µm
Proceedings of the 9th International Conference on Infrared Sensors & Systems Nürnberg (2006)
H. Harde, J. Pfuhl, M. Wolff, H. Groninga
MolExplorer: A New Tool for Computation and Display of Spectra from the HITRAN Database
Ninth HITRAN Conference, Harvard University, Cambridge MA, USA, 25.-28. Juni 2006
http://cfa-www.harvard.edu/hitran/HITRAN_conf06_presentations/Session5/5.5-Harde.pdf
M. Wolff, M. Germer, H. Groninga, H. Harde
Photo-Acoustic CO
2
Sensor based on a DFB Diode Laser at 2.7 µm
14th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP), P12.2, 185, Cairo/Egypt,
Technical Digest and Journal de Physique IV (2007)
M. Wolff, M. Germer, H.G. Groninga, H. Harde
Photo-Acoustic CO
2
Sensor based on a DFB Diode Laser at 2.7 µm
Eur. Phys. J. Special Topics, Vol. 153 (1), 409-413 (2008)
H. Harde, M. Dressler, G. Helmrich, M. Wolff, H. Groninga
New Optical Analyzer for
13
C-Breath Test
Proc. SPIE 6991, Biophotonics: Photonic Solutions for Better Health Care, 69910T (2 May 2008); Strasburg,
France, doi: 10.1117/12.781271; https://doi.org/10.1117/12.781271
M. Dressler, G. Helmrich, Hermann Harde
Photoacoustic HF-Sensor
Proc. SPIE 7003, Optical Sensors 2008, Strasburg, 70031F (28 April 2008);
doi: 10.1117/12.781679 (2008)
H. Harde, G. Helmrich, M. Wolff
Opto-Acoustic
13
C-Breath Test Analyzer
BiOS, Proc. SPIE 7564, Photons Plus Ultrasound: Imaging and Sensing 2010, 75641E (24 Feb. 2010),
San Francisco, https://doi.org/10.1117/12.841660
Contributions on National Conferences and Meetings
L. Pfeifer, H. Harde
Photoakustische Untersuchungen an Explosivstoffen in der Dampfphase
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Fachausschuss Kurzzeitphysik, Hannover,
27. März 1992, Verhandl. DPG (VI) 27, K 10.2, 1278 (1992)
M. Wolff, U. Selbach, H. Harde
Isotopenselektiver Nachweis von CO
2
für medizinische Anwendungen mit Hilfe der photoakustischen
Spektroskopie
Poster Lasertag 1992, Hannover, 2. Dezember 1992
M. Wolff, U. Selbach, H. Harde
Isotopenselektiver Nachweis von CO
2
für medizinische Anwendungen mit Hilfe der photoakustischen
Spektroskopie
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Arbeitsgemeinschaft Quantenoptik, Berlin,
17. März 1993, Verhandl. DPG (VI) 28, Q 31.5, 429 (1993)
M. Wolff, H. Harde
Photoakustische Spektroskopie am HF mit Hilfe eines Halbleiterlasers
Poster Lasertag 1995, Hannover, 6. Dezember 1995
M. Wolff, H. Harde
Spektroskopische Untersuchungen an der ersten Oberschwingung von HF
Frühjahrstagung der DPG, Sektion Quantenoptik, Jena, 14. März 1996,
Verhandl. DPG (VI) 31, Q 28.3, 255 (1996)
M. Wolff, H. Harde
Photoakustischer Sensor für Halogen-Wasserstoffe
Poster Lasertag 1996, Hannover, 11. Dezember 1996
M. Wolff, H. Harde
Photoakustische Spektoskopie mit Hilfe einer frequenzmodulierten DFB-Laserdiode
Frühjahrstagung der DPG, Arbeitsgemeinschaft Quantenoptik, Mainz, 3. März 1997,
Verhandl. DPG (VI) 32, Q 12.7, 318 (1997)
M. Dreßler, M. Wolff, H. Groninga, H. Harde
Photoakustischer Sensor für medizinische Anwendungen
2. Hamburger Studententag zur Medizin- u. Biotechnologie 2005
M. Germer, M. Wolff, H.G. Groninga, H. Harde
Photoakustische NO-Detektion mittels gepulstem Quantenkaskadenlaser
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Sektion Quantenoptik,
Verhandl. (DPG) (VI) 43, Q-Laser (2008)
Patents
M. Wolff, H. Harde, Vorrichtung und Verfahren zur Messung der Konzentration eines Gases in einem
Gasgemisch,
DE 44 46 723 (1994)
M. Wolff, H. Harde, Gasdetektor zur Messung der Konzentration eines Gases in einem Gasgemisch,
DE 196 38 761 (1996)
M. Wolff, H. Harde, H. Groninga, Verfahren zur Messung von Gaskonzentrationen oder dem Verhältnis von
Gaskonzentrationen mit potentiellen Anwendungen in der Atem-Analyse, DE 103 08 409 (2003)
Physics & Climate